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Preface

This report contains the 1988 annual progress reports by the Postdoctoral
Fellows of the Center for Turbulence Research. It is intended primarily as a
contractor report to the National Aeronautics and Space Administration, Ames
Research Center. A separate report entitled, “Studying turbulence using nu-
merical simulation databases -II,” covering the 1988 Summer program activities
was released earlier this year.

The primary objective of the CTR is to stimulate and produce advances in
physical understanding of turbulence, in turbulence modeling and simulation,
and in turbulence control. The primary means by which CTR seeks to achieve
these objectives is by bringing together key individuals in fields bearing on tur-
bulence to address diverse problems in turbulence. Postdoctoral Research Fel-
lows and students conduct research in collaboration with staff of NASA-Ames
Research Center and Stanford faculty members, using a substantial array of
research facilities provided by both institutions.

Four thrust areas have been established for research:

1. Fundamental modeling of turbulence

2. Turbulence structure and control

3. Transition and turbulence in high-speed compressible flows
4. Turbulent reacting flows

These program areas have been used in selecting the Research Fellows and also
as a guide for turbulence research by graduate students. The CTR roster for 1988
is provided in the Appendix. All Fellows with tenure of more than two months at
the Center provided a written report outlining their study and accomplishments
which appear in the following pages. The reports are grouped in the general
areas of modeling, theory and simulation, compressible and reacting flows, and
experimental research.

Parviz Moin
William C. Reynolds
John Kim
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The length scale for sub-grid-scale
parameterization with anisotropic resolution

By D. K. LILLY!

Abstract

Use of the Smagorinsky eddy-viscosity formulation and related schemes for
sub-grid-scale parameterization of large eddy simulation models requires speci-
fication of a single length scale, earlier related by Lilly to the scale of filtering
and/or numerical resolution. An anisotropic integration of the Kolmogoroff en-
strophy spectrum allows generalization of that relationship to anisotropic res-
olution. It is found that the Deardorff assumption is reasonably accurate for
small anisotropies and can be simply improved for larger values.

1. Introduction

Numerical integration of the time-dependent equations of fluid dynamics to
simulate evolution of the largest scales of motion has been applied for about 30
years, initially in the field of weather prediction. Early workers were concerned
over what to do about the scales of motion too small to be resolved by the
computer, but the problem was often confused with the numerical errors intro-
duced by finite difference algorithms. The technique that Smagorinsky (1963)
introduced grew out of an empirical variable eddy viscosity method due, I be-
lieve to R. Richtmyer (no reference available), for smoothing simulated shock
wave calculations. Smagorinsky and his associates recognized, however, that
Richtmyer’s variable viscosity was also consistent with the notion of a universal
equilibrium range of turbulence. I pursued this point and used the Kolmogoroff
inertial sub-range hypothesis to quantitatively relate the length scale required
in the Smagorinsky formulation to the resolved scale (Lilly, 1966, 1967). I as-
sumed isotropic resolution, although numerical simulations then and now often
are carried out with anisotropic resolution. The question of how to generalize
my expression for this purpose has engaged some attention. Deardorff (1970)
assumed that the length scale is proportional to the cube root of the product
of the resolution scales in the three directions. Alternatives have also been pro-
posed, most of them involving the effects of a nearby boundary. Piomelli, et al
(1987) review the subject and conclude that no real consensus has yet emerged,
though Deardorff’s formulation is widely used.

1 Permanent Address: CIMMS, University of Oklahoma
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4 D. K. Lilly

The purpose of this note is to aid in resolving this issue. I extend my earlier
calculation, oriented now toward spectral and pseudo-spectral integration tech-
niques, to allow resolution to vary with direction. I still assume, however, that
the small scale limit of the simulation is in the Kolmogoroff inertial sub-range in
all directions. This is a serious limitation, as the most common reason for apply-
ing anisotropic resolution is an expectation of anisotropic and/or inhomogeneous
turbulence, typically in regions close to a boundary. Thus the scale anisotropy
problem is usually compounded with a boundary layer problem and with the
likelihood that a classical inertial sub-range may not exist, at least in the scales
resolved by the simulation. Piomelli, et al (1987) discuss and test several addi-
tional parameterizations intended to improve the boundary layer resolution, but
all are modifications of an isotropic formulation related to Deardorff’s. The re-
sults to be presented here are offered to test and perhaps improve the Deardorff
assumption.

2. The problem and the solution

Consider the problem of integrating the Navier-Stokes equation under condi-
tions of incompressibility and constant density, so that

du; /8t + B(usu;)/dz; + Op/dz; = v3*u; [dz;° 1
2 J

and

au,-/a:c.- = 0, (2)

where p is pressure divided by density, and other terminology is conventional. A
low-pass spatial filter is applied to these equations, in recognition of the limited
resolution available to any real discretization technique. In the early develop-
ment era this was typically a uniform average over a box surrounding a spatial
grid point. Leonard (1974) introduced the use of Gaussian filters, a technique
which is widely applied in engineering fluid dynamics simulations. In many
current research simulations the effective filter is the spectral cut-off of a finite
Fourier transform. In any case it is assumed to be a linear operator and is here
designated by angle brackets <>. Because it is linear it may be exchanged with
the differential operators in (1) and (2) and applied to the flow variables directly.
This allows the linear terms of the equations to be integrated as if they were
unfiltered. The filtered momentum flux product, < u;u; >, cannot, however, be
resolved directly from the filtered velocities, and must be subject to a creative
parameterization.

I assume the decomposition of the momentum flux product applied by Sma-
gorinsky, Lilly, and Deardorff, i.e.
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< yiu; >=< y; >< u; > —7; + 6;F,
Tif = — < uiu; > + < u; ><u; > —6;FE
E=(<u?>-<u;>?)/2 (3)

with 7;; designated as the subgrid scale (SGS) stress, E the SGS kinetic energy,
and §;; is the Kronecker delta. The filtered equations of motion and continuity
are now written as

9 <u; > [8t+3(< u; >< u; >)/8z; + dn/dx;
= 87;;/0z; + V8% < u; > [9z,? (4)
d <u; > [8z; =0, (5)

where 7 =< p > +E.
The Smagorinsky parameterization for the SGS stress is of the eddy viscosity
type, given by

Tiy = K(Sij + Sji)a (6)
where S;; = 8 < u; > /9z;, and

K = )2%S, (7)

where §2 = Si;(Si; + S;;). The length scale A was assumed by Smagorinsky to
be proportional to the grid resolution. Some investigators have replaced S by
w, the square root of the enstrophy, i.e. w? = (9u;/dz; — Ou;/9z;)*/2. Not
much difference is found in practice, corresponding to the fact that the volume
integrals of §% and w? are identical and they have the same Fourier spectral
amplitudes.

I evaluated the length scale A by assuming the validity of inertial cascade the-
ory and neglecting intermittency effects. If the resolved kinetic energy equation
is derived by multiplying (4) by < u; >, the contribution from the eddy stress
term is

< u; > 9r;;/0z; = (< u; > 1;;)/0z; — KS?
= 3(( u; > r.-,-)/ax_,- - )2g3 (8)

The first term on the rhs is variable in sign and vanishes or is small in the

volume average, while the second term is always negative. It is assumed that

the loss of energy from the resolved scales, 2252, is the same as the viscous

dissipation of energy, €. These are equated after evaluating S? from spectral
integration, i. e.

52 = /0 " By dk ©)
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where E(k) is the spectral amplitude of kinetic energy, defined as an integral
along the surfaces of spheres in spectral space. The wavenumber k,,, must cor-
respond to the resolution limit, which is the cut-off wavenumber for spectral
discretization. It is assumed that at and near k,, the energy spectrum is given
by the inertial range form, i.e.

E(k) = ae®/2k~5/3, (10)

where « is the Kolmogoroff constant, about 1.5, and e is the viscous dissipation
of kinetic energy. Substitution of (10) into (9) leads to the result of integration

S? = (3/4)ae?/ 3k, 43 (11)

The rate of energy removal from the resolved flow is evaluated by substituting
(11) into the last term of (8) so that

2283 = (3a/4)%/22\%ek,,° (12)
Equating this expression to dissipation allows evaluation of the length scale as
A= §-3/21/2 — (4/3a)3/‘km”1 (13)

One may now set k,, = constant/A, where A is the grid interval, assumed
to be isotropic. The minimum value for the constant, assuming the spectral
wavelengths are bounded by the Nyquist limit, is two. When pseudo-spectral
integration techniques are applied, in order to avoid aliasing the constant must
be no less than three, which increases A by 50%.

I now wish to drop the assumption of resolution isotropy. For simplicity
I assume, however, axisymmetry, i.e. that the limits of resolution in two of
the three dimensions are the same. The typical situation involves sncreased
resolution close to a boundary, either through a variable grid length or use
of Chebyshev polynomials. Within the axisymmetric framework one also may
consider the effects of decreased resolution in one direction. In the conclusion
section I argue that the results for different resolution in all three directions can
be determined adequately from the axisymmetric case.

Results are obtained by writing the enstrophy spectrum function in three-
dimensional spectral space and integrating it over prolate or oblate spheroids,
that is figures obtained by rotating an ellipse about its long or short axis. This
may not correspond accurately to the resolution limits in a model using Fourier
modes in two dimensions and Chebyshev polynomials or finite differences in the
third, but it is more readily compared with the isotropic case. Similar results
can be obtained by assuming a cylindrical volume in wavenumber space, but
they differ only slightly and not in any qualitatively important manner.
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If the three-dimensional spectrum function is isotropic, as assumed, it is
E(k)/4rk?, and the 3-d enstrophy or S spectrum is E(k)/4x. The wavenumber
spheroid is assumed to be bounded by the equation for an ellipse, i.e.

(kn[knm)? + (ks /Kzm)? = 1

where k;, is the wavenumber in the axisymmetric direction, notationally assumed
to be horizontal, and k, is that in the vertical direction, with kj,, and k,,, the
horizontal and vertical spectral limits. In place of (9), the evaluation of S? is
accomplished by integration over the spheroid as follows:

ksm kni
5% = /O A E(k)kydkydk, (14)

The limit on the first integral is kny = Kpm (1 = kz2/kzm?)*/2. Note that if
E(k) were replaced by 4x in (14), the integral would give the volume of the
wavenumber spheroid, 47kpm°k,m. With the energy spectrum given by (10),
with k2 = ks? + k,?, integration of (14) yields

52 = (3/4) € *kpm® kym*Py(r) (15)

1
where r = km /ksmand y = '/ / [r® + (1 - r?)2?|"%/%da.
0

The particular form for S is chosen so that if it is substituted into the first
equality of (13), with y = 1 and the wavenumbers assumed to be inversely pro-
portional to the grid spacings Az, Ay, Az, one obtains the expression assumed
by Deardorff, i.e. A ~ (A:z:AyAz)I/ 3. More generally, upon substituting S into
(13) one obtains

A =2Apy ¥4, Ap = (4/30)% kpnm P kym 3, (16)

with Ap equivalent to Deardorff’s expression.
The integral for y in (15) can be reduced to the forms

y= r4/9(l - r2)_1/2/ m(cos:z:)"1/3dz,tan T = (1— r2)1/2/r,for r <1 (17a)
0

y=r*o(r2 — 1)1/ / " (cos 2)2/3dz, sin g, = (2 — 1)42/r,for r > 1 (170)
(1)

For the extreme cases r = 0, oo, the integration limits z,, become #/2 in both
expressions, and the integrals are evaluated in terms of tabulated Gamma func-
tions. Thus for small r, S% ~ k m4/3 and A ~ kym~1, while for large r,
S2 ~ k;,mll %sm and A ~ knm ! 4l<:,m—3/ 4 A somewhat more revealing in-
terpretation can be obtained by differentiating A with respect to r. This yields
the following:
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—-1/3forr<1 (18a)

rA~19r/8r = —(3r/4y)By/Or = Oforr=1 (18b)
5/12for r > 1 (18¢)

3%2/8(Inr)® = (4/27)Ap at r = 1. (184d)

These show that the Deardorff expression is valid in the vicinity of r = 1, but
that with increasing anisotropy in either direction A becomes larger than Ap.
Fig. 1is a plot of A/Ap. The data for the curve labelled “Length scale® were
calculated to two-three digit accuracy by using the (18d) for .05 < r < 20
and matching that with an expansion of the expressions in (17a,b) around their
limiting values. The straight lines are plots of the asymptotic forms, that is
y~%/4 for the y’s given by (17a) for r < 1 and (17b) for r > 1.
An accurate approximation for .02 < r < 50 is

Map = r@RV Lm0 _y (19)

This is obtained as a solution to (18d), but with the rhs replaced by (2/27)(A +
Ap). This relation is also plotted in Fig. 1, and is imperceptibly different from
the “Length scale” except at the most extreme anisotropies.

3. Conclusions

The results of the above calculation indicate that the Deardorff formulation
is accurate to within 20% for .2 < r < 5. For anisotropies greater than that the
length scale should be increased, with (19) sufficiently accurate for anisotropies
less than a factor of 50 either way. Such large anisotropies are unlikely to produce
accurate simulations in any case, and probably need to be enhanced by more
sophisticated parameterizations than the Smagorinsky formulation.

Upon consideration of the nature of these solutions, it seems evident that
they can be extended to the case where the resolution is different in all three
directions. Since equation (18) or (19) is symmetric in Inr, it doesn’t seem to
matter much whether two wavenumber limits are larger and one smaller, or one
larger and two smaller. Apparently the results are only sensitive to the largest
ratio of the length scales, so presumably the existence of a third dimension with
an intermediate resolution would have little effect.
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Turbulence modeling
By T. -H. SHIH
1. Motivation and Objective

Motivation

In recent years codes that use the Navier-Stokes equations to compute aerody-
namic flows have evolved from computing two-dimensional flows around simple
airfoils to computing flows around full scale aircraft configurations. Most flows
of engineering interest are turbulent and turbulence models are needed for their
prediction. Yet, we know that present turbulence models are adequate only
for simple flows and do poorly in complicated flows such as three-dimensional
separation, large-scale unsteadiness, etc. The same progress that allowed the
development of these aerodynamic codes, namely the introduction of supercom-
puters, has allowed us to compute directly turbulent flows, albeit only for simple
flows at moderate Reynolds numbers. These direct turbulence simulations pro-
vide us with detailed data that experimentalists have not been able to measure.
This work is motivated by the fact that data exists for developing better turbu-
lence models and by the need for better models to compute flows of engineering
interest.

Objective

The objective of this work is then to develop turbulence models for engineering
applications. The model categories that show promise for immediate use are on
the two-equation level and the Reynolds-stress level. We will make use of existing
methodologies to develop models. The models will be tested using data from
direct simulations, experiments and analysis. Specifically, our objectives are as
follows:

1. Examine the Reynolds stress budgets using direct simulation flow fields
(Mansour et al 1988, Moin et al 1989).

2. Use Rapid Distortion Theory to analytically study the effects of mean
deformation on turbulence. In particular, examine the development of the rapid
pressure-strain under rapid distortions.

3. Compare existing models with data and theory. Develop models where
needed using appropriate expansions and constraints. Test these new models
using results from direct simulation, experiment and theory.

4. Use the method of moment generating function to extend second order
closures to higher order closures. We know that there exist a close connection
between high-order moments and coherent structures. The moment generating

PRECEDING PAGE BLANK NOT FILMED



12 T. -H. Shith

function approach should allow us to include the effect of coherent structures on
the models.

5. Extend turbulence modeling to compressible flows.

2. Work Accomplished

1. Numerical simulation of a three-dimensional boundary layer — AIAA pa-
per no. 89-0373 (work supported in part by AFOSR)

The objective of this simulation is to study the mechanics of three-dimensional
boundary layers and develop improved models for their predictions. Three-
dimensional effects were achieved by direct simulation of a fully developed tur-
bulent channel flow subjected to transverse pressure gradient. To obtain a good
statistical sample during the transient period, 14 computer runs were ensem-
ble averaged. Each run started from a different realization of the channel flow
(far apart in time). The simulation shows that, in agreement with experimental
observations, the Reynolds stresses are reduced and that near the wall a lag
develops between the stress and the strain rate. The reduction in the stress is
due largely to a drop in the production rate and an increase in the dissipation
rate. In the coming year, we will study the performance of existing second order
closures in predicting this drop and introduce improvements where needed.

2. k-e modeling

k-e turbulence models are often used in computing engineering flows with
moderate success. In general, the flow field is qualitatively well predicted, but
quantitative agreement often falls short. In the case of Reynolds stress modeling
the question of a length scale for an eddy viscosity does not arise, and the energy
dissipation rate, ¢, is one of the unknowns of the problem. In this work an €
equation has been developed following the methodology of Lumley (1978). We
used it in connection with both two-equation modeling and Reynolds stress
modeling.

A two-equation model for use in low-Reynolds number flows has been tested
against the channel data of Kim, Moin and Moser (1987). The modeled equations
are given by,

v
ki+ Uk = [(—TL + U) k,k] +vrSiySij — €
Ok k

v € €€
€t + Uker = [(FT- + u) e,k] + ClZVTSijSij - szez
€ k

1
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O = 1

o =13
Cy1=1.48
ng 1.8
€ —e—¢

¢ =k sk ;/(2k)
vr= Cufuk*/€
C,= 0.09

Ju=1- exp(—0.0llS%g)

foo1- % k2 \?

< 18P 6re

We find that the model adequately predicts the mean velocity profile (see figure
1) and the turbulent kinetic energy (see figure 2).

3. Second order modeling of near-wall low-Reynolds number turbulence

A set of second order closure models for low-Reynolds number turbulence
has been developed for the simulation of wall bounded flows without using wall
functions. The wall effect is built in the pressure-strain correlation term of the
Reynolds stress equation and in the modeled terms of the dissipation rate equa-
tion. We find that realizability is particularly important for modeling the near
wall turbulence. The proposed models are particularly suitable for surfaces of
arbitrary topology since they do not use the wall distance as a parameter. The
models are tested by computing the fully developed channel flow. The full set of
equations are used to compute the mean velocity, all the Reynolds stresses and
the dissipation rate of the turbulent kinetic energy. We find reasonable agree-
ment between the prediction of the mean profile and the data (see Figures 3)
which is an indication that the shear stress is well predicted. However, the nor-
mal stresses are not as well predicted. In particular the streamwise component
is underpredicted (see figure 4) while the transverse component is overpredicted.
The cause of this shortcoming is still being investigated.

4. Second order modeling of a passive scalar in turbulent shear flows — AIAA
paper no. 89-0607

A model equation for the scalar dissipation rate was proposed using the ansatz
that the ratio of mechanical time scale to scalar time scale has an equilibrium
value. In addition a model for the pressure related terms in the scalar flux equa-
tion was constructed based on consideration of realizability. The models were
tested by comparison with experimental data for heated plane and axisymmetric
jets,

5. Rapid Distortion Theory and 2-D 2-C turbulence modeling

Rapid distortion theory was used to analyze the development of the Reynolds
stress in a 2-D 2-C homogeneous turbulence under mean irrotational strain and
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mean shear. Here, 2-C refers to two-component turbulence. We found that the
development of the Reynolds stress under 2-D 2C conditions is very different
from its development under 3-D 3-C conditions. The findings can be summarized
as follows:

1. The mean shear or strain have no effects on the isotropy of the Reynolds
stress if the initial field is isotropic.

2. Initially anisotropic fields become isotropic under the influence of mean
shear or strain.

These findings are opposite to the finding in 3D 3C turbulence where mean
shear or strain will drive isotropic turbulence away from isotropy. In 2D 2C
turbulence the pressure strain drives the Reynolds stresses back to isotropy.

A general 2D 2C model for the pressure-strain term, T;;, was constructed
which contains only one undetermined coefficient C,

T.

—2-'k-1—. = S,'J' + 4Cb,-,,b,,,-S,,k + 2njkbik + 2n;,,bk,-

where,
1 1
Sij = 5 Uis + Uja)y Dy = 5(Uij = Uss)

Rapid distortion theory will be used to determine this coefficient. We postulate
that the more general 3D 3C model should reduce to this model in the limit of
2D 2C turbulence.

3. Future Plans

1. Examine the performance of existing second order closures in predicting
three-dimensional turbulent boundary layers. Introduce improvements where
needed.

2. Use Rapid Distortion Theory to study the effects of mean deformation on
turbulence. Extend the analysis developed for mean strain and shear to study
the effect of rapid rotation on the turbulence.

3. Use the method of moment generating function to extend second order
closures to higher order closures.

4. Use non-weighted ensemble averaging method (Shih et al, 1987) to extend
the second order models to compressible flows. This averaging technique (as op-
posed to Favre averaging) will allow us to apply all the incompressible modeling
methodologies to modeling compressible flows.

REFERENCES
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On curve and surface
stretching in turbulent flow

By N. ETEMADI!

Cocke (1969) proved that in incompressible, isotropic turbulence the average
material line (material surface) elements increase in comparison with their initial
values. We obtain rigorously, among other things, good estimates of how much
they increase in terms of the eigenvalues of the Green deformation tensor.

Introduction

In the following note we will study deformation of material curves and surfaces
convected in a turbulent flow. We will do this by looking at the notion of material
line and surface elements as a means of generating hypotheses for the so called
flow path (Lagrangian) of the motion. Then we will use these hypotheses to
obtain upper and lower bounds for the evolution of the ensemble average of the
arc length (surface area) of an arbitrary curve (surface) in time.

For the definition of material line and surface elements and their historical
background see Monin and Yaglom (1975). Cocke (1969) is the first who gen-
erated these mathematical assumptions, see section 1.1, “implicitly” and gave
a convincing proof of them for isotropic turbulence. Orszag (1970, 1977) takes
these assumptions for granted, and by a variant of Cocke’s arguments obtains
somewhat weaker results than Cocke’s, see Remark 1.2. Our work complements
the work of Cocke. Namely, we will bring out these assumptions in section 1,
and we will show, first, that once one accepts these assumptions then Cocke’s
(1969) results can be improved to obtain “tight” upper and lower bounds for the
ensemble average of material lines and surfaces. Then, in the remaining part of
section 1 and in section 2 we carry on the results to arbitrary curves and surfaces,
and in turn we also obtain upper bounds for moments of the dispersion between
two points moving in the flow at any given time in terms of their separation at
initial time.

Throughout our work we will use z(a,t) as the Lagrangian representation of
the flow, i.e. the trajectory followed by the particle which is at a at initial time
to. We will assume that z is smooth enough in a space-time region and is, for
fixed ¢, an invertible mapping so that our manipulations are legitimate. We
will also use |v| as the magnitude of an arbitrary vector v, whose components,
without danger of confusion, will be denoted by v;, vz, and vs.

1 University of Illinois at Chicago ¢

\\
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1. Curve Stretching
The motion of an infinitesimal material line 6/ is governed by the equation

dsl sl &
E‘ = (51 . V)u or —d? = Zu__.,-&l,-, (1)
=1

with 6l(to) = 6°1. Where d% is the material derivative following the motion, see
e.g. Monin and Yaglom (1975) section 24.5. It is easy to check that the above
equation has the solution,

l=> zx6% ;z(a,to) =a, (zi(ato)) = (6;) =1, (2)

k=1

where I is the identity matrix.
Let p(a,t) be the Lagrangian density. It is easy to show that

det(z; ;(a,t)) = %0)—) = %(:-, (3)

where the left hand side is the determinant of the Jacobian matrix (or the
Jacobian) of the transformation y = z(a,t),t > to, see Batchelor (1977) p.79.
In particular, the Jacobian is one when the flow is incompressible.

Next consider

8117 = 6°17 (2:,5)7 (21,3)6°1 = LT WE°L. @

Clearly W is a symmetric non-negative definite matrix. Since its determinant is
(po/pt)?, consequently its eigenvalues, say w;, w2, ws, are strictly positive and

we have .

det(W) = det(X,-'J-)2 = Wwawg = z—g (5)
t

Let A = (a;;) be the unitary (rotation) matrix corresponding to diagonalization
of W. Thus |A6%!| = |6°1|. We can rewrite,

BIE (AT (AN (483
[601Z ~ TAs0nz T T2 as0lz T T (A0 (6)
= (stn%8cos?p)w, + (sin®8sinZe)wy + (cos?0)ws,

where 8, ¢ are the usual spherical coordinates of the unit vector T%:—:T'

Now we are in a position to take ensemble averages of both sides of this equa-
tion. To do so, we need to make some assumptions about the joint probability
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distribution of the variables involved; namely w;’s, 8 and 1. This is where the
physics of the problem come in. The following three assumptions have been
extracted from the work of Cocke (1969) who proved them to be true for incom-
pressible, isotropic turbulence.

Assumptions;
(1) w;’s are independent of 8 and 3,
(2) 0 and ¢ are uniformly distributed over the unit sphere,
(3) w;’s are identically distributed.

Assumption one implies that the random orientation of the element 6! is un-
correlated with its random deformations along the principal axis. Assumption
two simply says that 6/ is equally likely to be oriented in any direction. Finally,
assumption three means that the random deformations of 6! along its principal
axis have the same probability law.

Proposition 1.1. Under Assumptions (1) and (2) we have,

_<\/——+\/—+\/—)_(|f(fl||)sl<\/ﬁ+\/w_2+\/w_s), (9)
(o wa  wa)) < D) < (G + wa + we)). ()

Proof. Since /z is concave and the coefficients of w;’s add up to one, from
(6) and (19) we obtain,

'l‘f—oll'| > (sin®8cos?)y/wi + (sin?0sin®y)\/wz + (cos?6)\/ws. ()

~ Also it is clear from (6) that,

6l
_||6°l‘| < |sinfcosyp|\/wy + |sinbsint|\/w2 + |cosb|\/ws. (8)

Next, use the joint density function of § and 1, i.e. ﬁsinﬂ 0<8<m 0L
1 < 27, to conclude that the average of the coefficients of w;’s and their square
roots, in (6), are % and %, respectively, and this will in turn give us (£). Since
the coefficient of w;’s in (6) are bounded by one we are only left to show the left
hand side of (i¢). To see this note that again by the fact that \/z is concave,
from (6) and (19) we have,

[ - 202 2
|50| = (wy + ws + ws)’3 [(sm Ocos?yp)wy + (sin20siny)w, + (cos?8)w;
|69 w; + we + ws

stnfcosylw, + |stnbsiny|ws + |cosflw
Z(w1+wz+w3)%[l ¢l 1w1|+w2+ﬂ; 2 | I 2

]%

]
(9)
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Now the average of the coefficient of w;’s in the above line is -;— and we are
through by Assumption (1).///

Proposition 1.2. Under Assumptions (1) and (2) and/or (1) and (3) we have,

51 .
—(w1+w2+ 3’)<((ILOI|I)”)<( ’+w;+w3)f00<p<2 (?)
612 )
(|6°l|2) = (w1 + wy + w3) for p =2, (¥)
P rw s} 181) +wf +wf

(UL < (o)) < @O, )

1 6l .
3 foa(wswaus) < (log(7i51). ()

Proof. In light of what we have said in the proof of the above proposition,
(#7) is immediate under Assumptions (1) and (2). Now we can conclude (i) by
utilizing Assumptions (1) and (3) in (6) to obtain,

e
|601|2

) = (sinBcos?tp)(w;) + (sin8sin?ep) (ws) + (cos?0)(ws).
= (stn?0cos®y) + sin20siny + cos?8)(w,) = (w,) (10)

1
= g(wl + wa +w3).

The left hand side of (¢) and the right hand side of (it?) follow from an inequal-
ity like the one given in (7). /z should be replaced by z3, and the direction
of the inequality should be reversed due to convexity when p > 2. The right
hand side of (i) is trivially true and the left hand side of (:t7) is a consequence

of (Tl;#[)” < ((]-!5-651,1[)”), p > 1, see (18), and the right hand side of (s) for p = 1.
Finally to obtain (iv) use the concave function log(z) rather than /z in (7)

under Assumption (1) and (2), and an argument similar to the one given at (10)
under Assumption (1) and (3).///

Remark 1.1. Note that the left hand side inequalities in the above propositions
are strict unless w; = w2 = ws. For all the concave functions involved are strictly
increasing. Clearly this happens only when W is the identity matrix, meaning
pure rotation. Furthermore, this has to be the case with probability one in order
to have equality in the above propositions, which is certainly not an interesting
case.
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Corollary 1.1. (Cocke). For an isotropic incompressible turbulence,

|6l| |6!|

for any p > 0.

Proof. Cocke (1969) gives an a priori proof to the effect that the Assumption
(1) to (3) are true for isotropic incompressible flow. This invokes the above
proposition and together with Remark 1.1 and the fact that det(z; ;) = 1, see
(3), we obtain the first inequality. The second one follows from (18), and the
one we have just established as follows;

<|!56°II|P) = exp[log(lléa—:ll;)] > CIPK’O!IIL:;,I—I'T;)] = exp[p(logll;—ollll)] >1.  (11)

We could have also used the arithmetic geometric mean inequality, (w] + w5 +
w§)/3 > {/(wiwaws)", to achieve the same end.///

Remark 1.2. The proof of the Assumptions (1) to (3) is the thrust of the work
in Cocke (1969) in which he has also shown Proposition 1.2 (ii) and (iv), the
above remark and corollary by using the same argument. Orszag (1970) takes
these assumptions for granted, follows Cocke’s argument and obtains a weaker
result, (]Jgnl-}lz;) > 1, see the above corollary for p = 2. Note that this result does
not imply that the average material line stretches. Now if we agree on all three
assumptions, then it is trivial to show that (W) = ~(&;,); where « is the right
hand side of (ii) in Proposition 1.2. In this connection see also Orszag (1977),
P.240-241.

Next we extend the above results to an arc length following the flow. The
statement of the inequalities needed to carry this on can be found in the ap-
pendix. Let C(s;to) : [a,b] — RS> be a parametric representation of a non-
random curve at time to. Then C(s;t) = z(C(s;t),t) is the corresponding
random curve , following the flow at time ¢t. Let C, and C¢, t > to be their arc
lengths, respectively. For homogenous turbulence define,

oft) = (LTLE VT + 5, Bie) = (2t
3 < o) = e

. where the first and second inequalities are the consequence of (19) and (18)

respectively.

Theorem 1.1. For an isotropic, incompressible flow,

Cto < ezp{(log(C¢))} < (Ct) < 1(t)Ce,, (?)



24 N. Etemad:

Ceo < a(t)Ce, < (Ce) < ga(t)cto’ (32)
Y3 6(0)Cea < (C1) < VEB()Cer. ()

Proof. The above corollary implies that for the non-random vector 6% =
C'(s;to),

(tog(] > _ = xCh(s; to)])) = (log(|61])) = log(|6°l]) = log(IC'(s;t0)]).  (12)
k=1

Consequently,

b .
cap{(loa(Co))} = eap{{os] [ 228 4y
(bu (20), 51 =(a,8) > [ ezp{1og(1 255D )} as

- / exo{{tog(] 3 2 (Clsito), OCL(ss o)) ds (13)
a k=1

(v 12) 2 [ ezp{tog(C"(sito))}as
=/b IC" (s;to)| ds = Ci,.

Next, inequality in (¢) is an immediate consequence of (18) with ¢ = ezp(z).
The following one is true by virtue of (18) with ¢ = /z, and Proposition 1.2
(ii). For the rest of the inequalities all we need is Proposition 1.1.///

Remark 1.3. Since in an inviscid flow vortex lines remain vortex lines, the
above theorem is an statement about their evolution in time when the flow is
isotropic and incompressible. The same is also true for vortex sheets which will
follow from the discussion in section 2.

Remnark 1.4. The reason for presenting various upper and lower bounds is for
their potential in applications. For instance, with regard to the above remark and
under the same conditions, one can compute 2 (t) as the ratio of the enstrophy
at time t to time t,.

Proposition 1.2 will give us “tight” upper and lower bounds for ( f: (é%(f‘—tl [Pds)
in an obvious way. This can be used partially to get information about the mo-
ments of C,.
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Theorem 1.2. For an isotropic, incompressible flow, let a,(t) = (wf + w;’l +
wﬁ }/3. Then,for p > 0,
(Ceo)® < ((Ce)?) (¥)
for0<p<1,

ap(t)[min,ejo,1{|C"(8;0)[P'}] Ceo < {(Ce)?) S (Ce)? < & (Ceo)” (i)
forp>1,

(Cto)? < €] (Ceo)® < (Ct)® < {(Ce)) < 3ap(t)[maz,po,1{IC" (s:t0) P~} (Cto

)
where ¢z (c1) is the minimum (maximum) of the coefficients of C¢, in the upper
(lower) bounds for (C) in Theorem 1.1, and without loss of generality, we have
assumed [a, b] = [0,1].

Proof. The easiest way to handle (5} is to raise the left hand side of (%) in
Theorem 1.1 to power p, take p inside the log, and then use (18) with ¢ = ezp(z).
The left hand side of (ii) and the right hand side of (i7%) are also the cosequences
of (18) with ¢ = z” in an obvious way, and the remaining parts are easily followed
by Theorem 1.1.///

The next corollary will give us information about the moments of evolution
of a straight line segment in turbulent flow and also the moments of dispersion
of two points as time goes on.

Corollary 1.2. Let d; = min|c}, ap(t)] , d2 = maz[ch,3a,(t)] with ¢;1,c2 and
ap(t) as in the above theorem.Let C(s;t0) = a1 + s(az2 — a1), se€[0,1]. Then for
an isotropic, incompressible turbulence,

d1|a2 —ai Ip < ((Ct)p) < d2|a2 - all” for p>0, (‘l)

(|z(az,t) — z(a1,t)|P) < d2]az — a1’ for p>0. (#7)
Proof. Note that |a—cla-:ﬂ| = |az — a1| and use the above theorem.///

2. Surface Stretching

In this section we will extend the above results to the evolution of a surface
area in turbulent flow. It turns out, just as in the work of Cocke (1969), that
only minor modifications are needed to do so.

Let 6° and 6%k be two infinitesimal material line at ¢t = t,. We can form an
infinitesimal material surface by taking the vector product of these vectors, i.e.
695 = 6% x 6%. This at time ¢ becomes,

3 38
6S =6l x 6k = ()_ X,;6%;) x (3 X ;6%;). (14)

i=1 =1
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Let the matrices W, A and the eigenvalues, w;’s, of W, be as before. From the
identity,
lvr X v2]? = |va[*fva|* — (v1 - v2)?, (15)

for any given vectors v; and v, and the fact that [6°S|? = [A6%1 x A6%Kk[2, A
being unitary, we can easily obtain,
6s|2. (A8l x ABK)E | (AGOIx ASK)S | (AG%1x AE°K)3
1698 ~ W27 450 x 460Kz T V1214601 x A8OKk[2 T 124800 x A6OK[?

= (sin20cos?Y)waws + (sin?0sin®Y)wiws + (cos?0)wyw,.

(16)
Now (16) plays the role of (6), and we only need to modify Assumption (3) as
follows;

Assumption,;

(4) wiw2, w ws and wows are identically distributed. (Note that Assumptions
(3) and (4) are equivalent for incompressible flows.)

Now all we need to do is to replace wy, wq, ws by wows, wewy, wyws ; 61,8
by 65,6°S , and C,C,, by S, Si,, and [a,b] by D, respectively, in the above
results, including the remarks, to obtain the new ones corresponding to surfaces.
Where we let S(u,v;to) be a parametric representation of a nonrandom surface
on a region D on the plain, S, be its area, and,

_ Bz(S u, v; to) t) . 9z(S(w,vito).t) . 0
St // | dv | dudv, (")

the area at time t.

The only nonsymbolic modification of the proofs are: (a) In Theorem 1.2 the
area of D has to be one or otherwise the right (left) hand side of (#¢) ((#%)) has
to be multiplied by that area to the power p — 1 due to the correct usage of
Jensen’s inequality; (b) In Corollary 1.2 the notion of a distance between two
points has to be replaced by an area of a region on a plane and its left hand side
of (ii) to be interpreted correctly.

Remark 2.1 We could have always used Proposition 1.2 and its counterpart
for surfaces to obtain upper and lower bounds for moments of material lines,
material surfaces, arc lengths, and surface areas at the expense of having different
constants. Compare Proposition 1.1 with Proposition 1.2 when p = 1. The
difference between these two propositions becomes significant if one can realize
physically non-isotropic incompressible flows that satisfy only one pair of the
assumptions, involved in these propositions, rather than all of them. Finally,
for analogous results concerning homogeneous turbulence we invite the reader
to consult Corrsin (1972).
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Appendix

(Jensen's Inequality) Let X be a random variable and ¢ a convex (concave)
function containing the range of X. Assume both X and #(X) have ensemble

averages, then
¢((X)) < (2) (6(X)). (18)

Proof. See any standard graduate textbook in probability theory or measure
theory e.g. Billingsley (1986) p.283.

The following special case of Jensen’s inequality has been used frequently; let
P1, P2, and ps be three positive numbers whose total sum is one, let a;, a2, and
as be any real numbers. Then with ¢ as above we have,

¢(Zmas) < (2) Zp.-qS(a.-)- (19)

Proof. Let X in (18) be the random variable which takes the value a; with
probability p;, t=1,2,3.///

(Dunford and Schwartz[5], p.535). Let (S,X,u) and (Sy,X1,u;) be positive
measure spaces. Assume p(S) = 1. Then if K is a u X p; — measurable function
defined on S x Sj,

/ ea:p{/ log|K (s, s1)|u(ds)}pi(ds1) < e:cp{/ [log(/ (s,81)|p1(ds1))]u(ds)}.

(20)
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Renormalization group analysis of turbulence
By L. M. SMITH

1. Objective

The objective is to understand and extend a recent theory of turbulence based
on dynamic renormalization group (RNG) techniques. The application of RNG
methods to hydrodynamic turbulence has been explored most extensively by
Yakhot and Orszag (1986). They calculate an eddy viscosity consistent with the
Kolmogorov inertial range by systematic elimination of the small scales in the
flow. Further, assumed smallness of the nonlinear terms in the redefined equa-
tions for the large scales results in predictions for important flow constants such
as the Kolmogorov constant. The authors emphasize that no adjustable param-
eters are needed. The parameterization of the small scales in a self-consistent
manner has important implications for sub-grid modeling.

2. The RNG Transformation

Renormalization group methods were first developed for quantum field theo-
ries. They were later applied to the theory of critical points in materials that
undergo phase transitions (Ma, 1976). Predictions for the universal exponents
characterizing the behavior of thermodynamic quantities near critical points are
quite accurate. The common feature of the physical phenomena amenable to
RNG analysis is a lack of characteristic length and time scales.

The lack of characteristic length and time scales in turbulence makes RNG
methods attractive. The universality of the inertial range spectrum in widely
varying turbulent flows is also suggestive.

The RNG transformation consists of two steps. First, small scales are elimi-
nated by an averaging procedure. Second, space is rescaled. New independent
variables are defined on the original intervals by the rescaling. In most cases,
the dependent variables must also be rescaled.

A set of equations is renormalizable if it is unchanged by the RNG transfor-
mation. Renormalizability implies scale invariance. Usually a set of equations is
renormalizable only for specific values of its coefficients and the scaling parame-
ters. These points are called fixed points. However, the physics of more general
cases is often well described by the physics at a fixed point.

The method of attack is to iterate the RNG transformation of the equations.
With each transformation the coefficients in the equations change. One looks
for a situation in which this iteration procedure converges.

In addition to redefining coefficients of existing terms, the scale elimination
often generates terms of different form than those in the original equations.

PRECEDING PAGE BLANK NOT FILMED
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These new terms can be classified as irrelevant, marginal or relevant according
to whether they decay, are constant or grow when rescaled. One can ask if a
fixed point exists in the absence of new terms. If so, all new terms must be
irrelevant for the system to be truly renormalizable at that point.

3. The Basic Premise of the RNG Analysis of Turbulence

The theory is based on the postulated equivalence between inertial range solu-
tions of the Navier Stokes equations subject to initial and boundary conditions,
and homogeneous isotropic flow driven by a Gaussian random force (Forster et.
al., 1977, Yakhot and Orszag, 1986). The model equations are then

v 1 2
-é?+(v-v)v_f—;VP+VoVV (1)

V.v=0 (2)

where v(x,t) is the velocity, P the pressure, p the density, v, the kinematic

viscosity and f the forcing. The domain of equations (1) and (2) is unbounded.
The white noise force is given by its correlation function in wavevector, fre-

quency space. The correlation is assumed to obey a power law spectrum,

(fi(k,w) f(—k, ~w)) o [k|7¥ (3)

where the brackets indicate an ensemble average. The exponent y is chosen to
give the inertial range energy spectrum. Once y is fixed, there are no adjustable
parameters in the problem.

4. A Revised RNG Analysis

Yakhot and Orszag show that analysis of (1)-(3) using the full RNG trans-
formation yields the scaling laws of velocity correlations, and thus the energy
spectrum. If y is set equal to the number of dimensions, 3, the Kolmogorov
spectrum is recovered: E(k) o k—58/3 where k = |k|. Amplitudes, however, are
left undetermined.

By performing only the scale elimination, and abandoning the rescaling, they
are able to find both scaling laws and amplitudes. Then E(k) = Kognge?/3k~5/3,
where ¢ is the dissipation rate and Kogy is the RNG prediction for the Kol-
mogorov constant.

Rescaling is used only to justify neglect of new terms generated by the elimi-
nation procedure. The terms of concern are cubic in the velocity vector and are
marginal with respect to the fixed point found in their absence. One wonders
how the results would change if the cubic terms are retained. A goal of the
present research is to assess the effect of these terms on the system.



Renormalization group analysss of turbulence 31

5. The Effect of the Small Scales

The theory developed by Yakhot and Orszag is an attempt to calculate the
effect of the small scales on the large scales in turbulence. Their method deter-
mines that the large scales ‘feel’ the small scales as an eddy viscosity.

Equations (1) and (2) are written in wavevector, frequency space and the
pressure is eliminated by taking the curl of the curl. The equations for the
Fourier coefficients of the velocity field are then expanded in a power series via
the introduction of an ordering parameter which multiplies the nonlinear term.

A narrow band of wavenumbers is removed by averaging over their force field.
The averaging procedure replaces the contribution of the nonlinear interaction
of those wavenumbers with a term linear in the velocity vector for the remaining
wavenumbers. The nonlinear interaction is only approximately represented in
this term. The approximation is due to truncation of the power series at sec-
ond order and neglect of terms cubic in the velocity vector for the remaining
wavenumbers.

The coefficient of the linear term is an integral. The integral is evaluated in
the limit 0 ~ k << k., where k. is the low wavenumber cutoff of the eliminated
band. In this limit the integral is proportional to k?. Thus the large scales see
the small scales as (approximately) a viscous term.

Iteration of the elimination procedure produces an equation for the large scales
and long times identical in form to equation (1). The molecular viscosity v, is
replaced by an eddy viscosity,

5 ] -
6_: +A(v-V)v=f - %VP + ur Vv (4)

where vr is the eddy viscosity and X is the nondimensionalized ordering param-
eter. The eddy viscosity depends on k.,

vr = o[l + Boe(k;* — kg*)|'/? (5)
where § is a function of A, k. is the last eliminated wavenumber and k, is the
viscous cutoff. If one now takes the limit k. ~ k ~ 0,

vr ~ Be/3k—4/3, (6)
In this limit the ‘renormalized’ equation (4) has a fixed point, at which all

subsequent analysis takes place.

6. Evaluation of Universal Flow Constants

The nondimensionalized ordering parameter A is proportional to (y + 1)1/ 2,
where —y is the power of k in the force correlation function (see (3)). Recall
y = 3 for a Kolmogorov inertial range. Using y = 3, the fixed point value of A
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is 11.5. However, the RNG results depend on the simultaneous extrapolation of
k. ~ k ~ 0 and y approaching -1.

The assumption of small (y + 1) allows a power series expansion of the renor-
malized equations. The equation for the zeroth order velocity coefficient is the
Langevin equation,

(—iw + vrk?)v (k,w) =T, )

where v(k,w) is the Fourier amplitude, v = ¥(9) + Xv(1) + 32v(3) + | k and
w are small, and vr is given by equation (6). The value of 8 at the fixed point,
evaluated to zeroth order in 1}, is found to be § = .493.

Evaluation of the Kolmogorov constant follows a power series expansion at
the fixed point of the energy equation (the equation for the two-point velocity
correlations). The analysis is again for k. ~ k ~ 0O with vr given by (6).
When terms to lowest nontrivial order are retained, its value is found to be
Kogrng = 1.617 (Dannevik et. al., 1987).

The same scale elimination procedure can be performed on the equations for
the advection of a passive scalar. The renormalized equations for the large
scales are characterized by an eddy diffusivity. A power series expansion with
k. ~ k ~ 0 leads to a prediction for the Batchelor constant, Ba.

7. Goals

a. Further steps in the analysis remain to be understood. For example, the
RNG & — € model leads to a prediction for the von Karman constant.

b. One would like to assess the importance of the neglected new terms gener-
ated by the scale elimination procedure. These terms are cubic in the transform
coefficients of the velocity vector for the large scales.

c. An exploration of other forcing functions will be revealing.

i. We have already investigated the possibility of a non-white noise, power
law spectrum. The force correlation is allowed to fall off with frequency and
considered proportional to k"¥w~%. We find that there is no positive value of &
consistent with both dimensional analysis and a Kolmogorov energy spectrum.

ii. A completely satisfactory theory of turbulence should account for spatial
intermittency. In the present RNG formulation, intermittency might be included
by changing the statistics assumed for the forcing function.

d. It should be possible to extend the theory to flows other than homogeneous,
isotropic turbulence. Perhaps one can do away with the artificial forcing for
realizable kinds of turbulence.

e. Finally, the RNG sub-grid and x — € models should be tested.
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Low-dimensional chaos in turbulence
By J. A. VASTANO

Abstract

Direct numerical simulations are being performed on two different fluid flows in
an attempt to discover the mechanisms underlying the transition to turbulence
in each. The first system is Taylor-Couette flow; the second, two-dimensional
flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional
turbulence through low-dimensional chaos. The hope is that the instabilities
leading to chaos will be easier to relate to physical processes in this case, and
that the new understanding of these mechanisms can then be applied to a
wider array of turbulent systems.

In the past decade a new understanding of nonlinear processes in nature has
been provided by the application of mathematical ideas on chaos and bifurcation
theory (Ott 1981, Swinney 1983). An important result for turbulence researchers
has been the finding that some systems undergo a transition to turbulence by
first becoming low-dimensionally chaotic (Brandstater and Swinney 1987, Keefe
1987, Sreenivasan 1985). Turbulence models should benefit from a better un-
derstanding of weakly turbulent cases in which low-dimensional models can in
principle capture all of the system dynamics.

The purpose of this research project is to study instability mechanisms in
two model cases that have exhibited a gradual transition to turbulence, i. e.,
a transition to turbulence via low-dimensional chaos. The hope is that the
instabilities leading to chaos will be easier to relate to physical processes in
these models, and that the new understanding of these mechanisms can then be
applied to a wide array of turbulent systems.

The first of the two projects, undertaken with the advice and assistance of
Drs. Robert Moser (NASA-Ames) and Lawrence Keefe (CTR), is the com-
putation of the Lyapunov exponent spectrum for a model of Taylor-Couette
flow, the flow between concentric rotating cylinders (Brandstater and Swinney
1987, Moser 1983). Experiments on moderate aspect ratio Taylor-Couette sys-
tems have observed a transition from laminar, time-independent Couette flow
to periodic, quasiperiodic, and finally to low-dimensional chaotic motion. The
physical mechanisms driving the low-order transitions have been found, but the
transition to chaos is not well understood. The numerical method that we will
use was developed by Moser (1983) to study curved channel flow and assumes
axial periodicity. The method recovers the low-order transitions well, but the
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axial constraint may significantly affect the chaotic states. The experimental
evidence in the chaotic regime includes measurements of wavespeeds associated
with dominant frequency components in the flow as well as estimates of the frac-
tal dimension for the chaotic attractor. We can, therefore, verify the accuracy
of our simulation: the wavespeeds can be measured just as they are in experi-
ment, and the fractal dimension can be computed directly from a knowledge of
the Lyapunov exponent spectrum for the flow (Keefe 1987). If our numerical
results differ greatly from the experimental results on wavespeed, we may need
to consider a finite axial extent model. Given an good numerical model of the
flow, our dimension estimate will be more accurate (as accurate as computer re-
sources allow) than dimension estimates obtained indirectly from experimental
time series data.

Although the dimension estimate we obtain from the Lyapunov exponent spec-
trum is necessary to validate the model (or, perhaps, the experiment), there is
a great deal more to be learned from the exponents. The Lyapunov exponents
for a system measure the exponential rates of growth or decay for infinitesimal
perturbations in each phase space direction. There are, therefore, an infinite
number of Lyapunov exponents for any spatially-extended system, but for dis-
sipative systems almost all of the exponents are large and negative, signifying
the decay of transients to some attractor. The number of positive Lyapunov
exponents is a rough indication of the number of distinct mechanisms destabiliz-
ing the flow. Moreover, the time-varying contributions to the long-time average
exponents will indicate when in the system evolution the chaos-generating mech-
anisms are operating. The spatial structure of the eigenvectors associated with
the positive Lyapunov exponents at those times may indicate the nature of that
mechanism by showing where in the flow it is operating.

Progress on this work since 1 Sept 1988 includes familiarization with the NAS
operating environment and the Vectoral programming language, and full imple-
mentation of the curved channel code on the Cray 2. The additions to the code
necessary to compute the Lyapunov exponents have been inserted and tested
on periodic and quasiperiodic Taylor vortex flow. The basic code (without the
exponent calculations) is being run in order to estimate the minimum resolution
needed to model chaotic Taylor-Couette flow. Moser’s previous results showed,
for example, that a 32 x 16 x 32 (R — 0§ — Z) simulation of a periodic (wavy
Taylor vortex) flow reproduced the azimuthal wave speed found in experiments
to within the experimental uncertainty. Lowering the resolution to 16 x 16 x 16
only changes the wave speed by 1%, while a resolution of 16 x 16 x 8 gives a 5%
deviation. Moser attained good agreement with experiments on quasiperiodic
(modulated wavy Taylor vortex) flows using a 64 x 32 x 64 model. We are cur-
rently checking the effects of lowered resolution on this case. It seems likely that
only moderately-high resolution will be needed for chaotic solutions at Reynolds
numbers close to the quasiperiodic-chaotic transition.

A second, related research project is being conducted in collaboration with
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Dr. Thomas Pulliam (NASA-Ames) (Pulliam 1989, Pulliam and Vastano). This
is a study of the transition to turbulence in two-dimensional flow over airfoils
at high angles of attack. Experiments on forced flow over airfoils have found
that a transition to a chaotic state can be produced (Stuber and Gharib). Nu-
merical simulations of two-dimensional unforced flow had found a transition for
increasing Reynolds number from periodic flow to aperiodicity that included one
period-doubling (Pulliam 1989). We have now seen a period-doubling cascade
of bifurcations and a transition to low-dimensional chaos past a period-doubling
accumulation point. We are currently attempting to characterize the observed
chaos using Poincaré sections and Lyapunov exponent estimates from time se-
ries data. As in the Taylor-Couette research, the goal here is to identify the
physical mechanisms causing the period-doubling to chaos, rather than simply
establishing that such a transition exists.
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Close interactions of 3D vortex tubes

By M. V. MELANDER!

Abstract

The motivation for studying close vortex interactions is briefly discussed in
the light of turbulence and coherent structures. Particular attention is given to
the interaction known as reconnection. Two reconnection mechanisms are dis-
cussed. One is annihilation of vorticity by cross-diffusion, the other is an inviscid
head-tail formation. At intermediate Reynolds numbers both mechanisms are
operating.

1. Introduction

Close interaction and self-deformation of vortices are intriguing facets of fluid
mechanics. These interactions occur repeatedly in turbulent flows. We can,
therefore, expect that insight into fundamental vortex interactions will lead to
a deeper understanding of turbulence. The theory of turbulence in 2D flows
illustrates this point clearly. In 2D flows fundamental vortex interactions such
as axisymmetrization, merger, and dipole formation provide the mechanisms
for the emergence of large scale coherent structures (McWilliams 1984). These
structures in turn invalidate earlier statistical theories based on random phases
(Babiano et al 1987). Compared to 2D vortex dynamics, our understanding of
three dimensional vortex interactions is in its infancy. In order to improve this
level of understanding, it seems logical to begin by investigating the most basic
vortex interactions. This report marks the beginning of a thorough investigation
of such interactions.

We confine the study to unforced incompressible flows with no density vari-
ations and unbounded domains. Turbulence may then be viewed as a tangle
of interacting vortices. This follows directly from the integral formulation of
Navier-Stokes equations.

u() = o [ L 1 v (1)
w=Vxu (2)
D = - V)u+vAw (3)

1 Permanent address: SMU, Texas
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FIGURE 1. Schematic for the calculation of the velocity field u(r) generated
by a vortical structure.

When the fluid is at rest at infinity, the potential component in (1) vanishes.
The Biot-Savart law (1) then shows that the vorticity governs the flow. The
vorticity transport equation (3) in turn describes how the vorticity evolves with
the flow. Some attractive features of the formulation (1) - (3) are: I) The
irrotational part of the fluid does not appear in this description. This fact is the
motivation behind computational methods known as “vortex methods” (Leonard
1985). Unfortunately, these methods make strong assumptions concerning the
local vorticity distribution and may need further development before they can
safely be used to investigate delicate vortex interactions. II) The description (1) -
(3) appeals to our physical intuition. It is conceptually easy to give a qualitative
prediction of the short time evolution of a given vorticity configuration by means
of arm-waving and finger-twisting arguments. It is also possible to understand
vortex dynamics in terms of primitive variables and force-balancing (Moore and
Saffman 1972); although this approach leads to the same physical results, it
seems considerably more complicated. III) A systematic description of how the
small scale vortical structures influence the far-field u(r) can be obtained from
the Biot-Savart law (1).

Let us consider the last point in detail. Let a vorticity configuration be given
near position r' (Figure 1). The Biot-Savart integral gives the velocity field
u(r) generated by this vorticity configuration at position r. The integration
extends over the entire vorticity configuration. Clearly the integrand depends
on r, so it is an enormous task to evaluate the integral for many different r
positions. However, if |r’ — r| is large, we can expand the integrand in inverse
powers of |r' —r|. The coefficients in this expansion are moments of the vorticity
configuration and hence independent of r. These moments describe the shape
and internal structure of the vorticity configuration. Far away, only the lowest
order moment matters, but as we let r approach the vorticity configuration, an
increasing number of moments must be included. We see that physical space
moments yield a systematic description of internal structures influence on the
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far-field. This idea has been used with success in 2D (Melander et al 1986).

The above discussion shows that the interaction between well separated vor-
tices can be calculated efficiently in a straightforward manner. However, when
|r — 1’| is small, we are faced with an entirely different situation. We no longer
have a natural expansion parameter for the evaluation of the Biot-Savart in-
tegral. The integrable singularity in (1) tends to amplify the influence of the
local structure. As a consequence, the local self-induced velocity can become
very large for slender vortices. Such slender vortices can easily develop through
vorticity stretching. A more subtle effect of small scale vorticity lies in its ability
to alter neighboring large scale vortical structures. A concrete example from 2D
is the axisymmetrization of a single isolated vortex (Melander et al 1987); here
the small scale structures (filaments) influence the large scales in such a way as
to make the vortex core circular symmetric. Because of these effects, we must
treat the local vorticity structure and the associated small scales carefully. A
thorough study of close vortex interactions via direct numerical simulations will,
therefore, be most helpful for modelling of the local vorticity distributions and
the associated small scales.

Vortex dynamics reveals its most useful role when viewed in the light of co-
herent, structures. These vortical structures have been observed in many flows
that were previously regarded as fully random (Hussain 1986). Often these large
scale structures are superimposed by fluctuating vorticity (incoherent vorticity),
which makes the structures less obvious, but not less important. In spite of the
incoherent vorticity, the large structures still dominate the far-field. The inco-
herent vorticity does not influence the far-field directly, but can have an indirect
influence by altering neighboring structures, as discussed above. Many inter-
esting questions arise concerning the formation, persistence, characterization,
topology, and interaction of coherent structures. Some of these questions are
best approached through vortex dynamics. In this report we concentrate on in-
teractions that can change the topology. These interactions are generally known
as reconnections, although other names such as cut-and-connect, cross-linking,
and fusion are also used. We examine a number of reconnection interactions
under very idealized conditions. The interactions are simulated in isolation such
that non-local effects do not obscure the dynamics. Also, there is no incoherent
vorticity in our initial conditions.

2. Initial Conditions, Simulation Methods, and Diagnostics

The simulations were performed using a dealiased spectral (Galerkin) method
with a fourth order predictor-corrector algorithm for the time advancement.
This algorithm solves the Navier-Stokes equations (or the corresponding equa-
tions with superviscosity) in a cube with periodic boundary conditions. The
evolution of a passive scalar at a unity Schmidt number is calculated simultane-
ously. The initial conditions (Figure 2a-f) were chosen as rectilinear vortices with
a Gaussian vorticity profile. The evolution starting from the initial condition
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shown in Figure 2a was simulated using both Newtonian viscosity (Re = 2000)
and superviscosity, while in the cases (b-f) only superviscosity was used. The
spatial resolution in all these cases was 96 meshpoints in each direction. The
simulation starting from the initial condition shown in Figure 2g is discussed at
great length elsewhere (Melander and Hussain 1988 a,b,c).

The simulations produced databases which were analyzed on graphics worksta-
tions using the “interactive” program TURB3D. Displays of the spatial vorticity
distribution at various stages of the evolution were crucial in obtaining a physical
understanding of the interactions. Cross sections of vorticity and velocity fields
were also very helpful, whereas displays of other quantities such as helicity, dis-
sipation, and enstrophy production were found to be of secondary importance.
Tracing of vortex-lines turned out to be a major disappointment, for it seemed
impossible to find just the right set of vortex lines to clearly illustrate a given
interaction. In general, a few vortex-lines were not enough to reveal the dynam-
ics, while a larger number such as 20 gave a picture that was too complicated to
follow. Perhaps displays of vortex tubes via Clebsch potentials would be more
appropriate.

3. Discussion

In order to achieve a higher effective Reynolds number, a superviscosity was
used in most simulations. The superviscosity leaves the largest scales more in-
viscid than does a corresponding Newtonian viscosity. However, it is also known
that the superviscosity generates artificial small scale structures. Comparison of
two simulations, starting from the same initial condition (Figure 2a) but with
different diffusion operators, showed similar evolutions. The most important
difference between these two simulations was the evolution time-scale; it was
shorter in the superviscosity simulation. A similar effect has also been observed
by decreasing the Newtonian viscosity, and hence increasing Reynolds number.
We therefore conclude that the use of a superviscosity mimics a higher Reynolds
number flow and that the artificial small scale structures do not significantly
influence the large scale structures.

Inviscid filament calculations with regularized circular cores show that two
orthogonally offset vortices become locally antiparallel (Schwarz 1983 and 1985,
Siggia 1985). Careful studies show that if the same filament calculations are
continued further in time, then a finite-time singularity develops (Pumir and
Siggia 1987). This singularity is most likely caused by insufficient degrees of
freedom in the vortex cores, that is, inadequate modelling. Nevertheless, some
researchers feel that a similar singularity might be present in the full Euler equa-
tions (Pumir and Kerr 1987, Kerr and Hussain 1988). It has also been suggested
that this singularity is present in the Navier-Stokes equations at sufficiently high
Reynolds number (Pumir and Siggia 1987). Direct numerical simulations have
failed to capture signs of this singularity.
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Since it is almost impossible to prove or disprove the presence of a singularity
numerically, a more fruitful avenue is to concentrate on understanding the op-
erating physical mechanisms. One can argue that if it is possible to explain the
evolution without including new terms in the governing equations, then there
probably is no singularity. This argument rests on the general experience that
a singularity is a sign of missing physics in the governing equations.

The evolution starting from the initial condition shown in Figure 2a highlights
the soft and pliable nature of vortex cores, thereby clearly showing that vortex
cores do not remain nearly circular. The close proximity of the vortices results
in pulling of hairpins from the outer layer of the vortex tubes (Figure 3). These
hairpins form even before the main vortex tubes become locally antiparallel.
Later more hairpins form, especially in the wake of the locally antiparallel vortex
pair (hereafter referred to as the dipole).

The dipole is initially squashed by self-induction (due to the curvature of the
antiparallel vortex pair) and thereby form a head-tail structure. The dipole
is propagating by mutual induction. However, an oppositely directed velocity
field is generated by the remaining part of the vortex tubes. At first the dipole
velocity is the largest, but later the dipole-strength diminishes and as a result
the dipole is washed backwards. Thereby the curvature of the locally antiparallel
vortices reverses, the self-induced motion, therefore, also reverses, and the dipole
separates slowly. This reversal is the crucial part of the reconnection process
and occurs at the same time as the new “reconnected” vortices begin to separate
(Figure 3).

The reversal is caused by the diminishing dipole-strength, which can happen
by both a diffusive and an inviscid mechanism. The diffusive mechanism is
annihilation of antiparallel vorticity by cross-diffusion in the contact-zone and
is clearly important for low to medium Reynolds numbers. The result is a
true reconnection, albeit this reconnection is only partial as the cross-diffusion
is arrested by the reversal of the dipole propagation direction (Melander and
Hussain 1988a). The inviscid mechanism is the head-tail formation. The dipole
propagation velocity is determined almost exclusively by the head; therefore, the
head-tail formation effectively diminishes the circulation in the dipole. In the
high Reynolds number limit, this may result in an apparent reconnection. That
is, the large scale vortical structures appear as though a topological reconnection
has occurred, where in fact only a topology preserving entanglement has taken
place. The reasons for this conjecture are as follows.

Several numerical simulations with different Reynolds numbers and different
diffusion operators show that the large scale vortical structures rearrange on
a time-scale T, which does not increase with Reynolds number. Weakening of
the dipole is responsible for this rearrangement. If viscous effects are solely re-
sponsible for this weakening, then |vAw| must be at least finite as the Reynolds
number tends to infinity. This in turn implies that | Aw| must become unbounded
within the finite time T', which can only happen through axial stretching of the
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FIGURE 5. Sketch of Husain and Hussain’s rectangular jet experiment.

dipole. This stretching is caused by lengthening of the antiparallel vortices in
the contact-zone and by the strain form outside the contact-zone. From axisym-
metric vortex dynamics (Stanaway et al 1988), we know that the lengthening
effect is insufficient to cause a finite time blow up of |Aw|. The external strain
is also bounded due to the finite length of the contact-zone.

Neither of the simulations starting from the initial condition shown in Figure
2a had sufficient resolution to clearly separate the inviscid and viscous mecha-
nisms. It does not seem likely that sufficient resolution can be obtained in the
near future. In this respect the asymmetric initial condition (Figure 2b) is more
promising due to the fact that the circulation ratio can be made small such as
to allow for combined simulation and analysis. The dynamics of this simulation
is also much easier to grasp, see Figure 4. The weak vortex wraps around the
stronger one and thereby forms a large hairpin. Vortex stretching occurs mainly
in the legs of the hairpin. The tip of the hairpin is unstretched and dispersed
in the azimuthal direction. Therefore, the curvature of the legs accounts for
most of the self-induced motion, which is such as to split the hairpin into two
diverging helical structures.

The evolutions of the initial conditions shown in Figures 2c-f were also in-
vestigated and explained. I later became aware that the latter occurs in a
rectangular jet experiment by F. Hussain, see Figure 5. Pulsing of the jet gen-
erates rectangular vortex rings, which initially undergo a near-recurrence with
90 ° axis-flip. This phenomenon can be explained by a filament model (Bridges
and Hussain 1988), except for rapid mixing processes near the corners. Further
downstream an overtaking collision occurs and the resulting reconnections pro-
duce four rings. The overtaking collision occurs because the rectangular vortex
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rings do not comply with the traditional leap-frog process of axisymmetric vor-
tex rings. The experiment compares well with the simulation shown in Figure 6
and clearly validates our selection of idealized initial conditions.

4. Conclusion

The insight gained by viewing the evolutions of the above idealized initial
conditions on graphics workstations has proved to be invaluable in the process
of constructing mathematical models of the evolutions. The modelling, which is
now under way, centers around two types of initial conditions. One type is the
symmetric configuration of two antiparallel vortices with sinusoidal perturba-
tions (Figure 2g). The analysis of this model also applies to the collisions shown
in Figure 2e-f. The asymmetric entanglement shown in Figure 2b and Figure 4
is also being modelled for small values of the circulation ratio.
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Numerical simulation of viscous vortex rings
By S. K. STANAWAY

1. Motivation & Objectives

This work is directed toward understanding vortex interactions and their role
in turbulent flow. The objectives are twofold. First, to use the existing ax-
isymmetric code to study the annihilation process of colliding vortex rings and
determine the relevance of this problem to similar 3D phenomena. The second
objective is to extend the code to three dimensions. The code under development
is unique in that it can compute flows in a truly infinite domain (i.e. without
periodic boundary conditions or approximations from truncating the domain).
Because of this, we are able to compute the far field sound, and therefore, con-
tribute to improved models of turbulence generated noise for this class of flows.
Issues which can be addressed by the code include: effects of viscosity on mode
selection in azimuthal breakdown of vortex rings (i.e. the Widnall instability);
reconnection, the associated production of small scales, and the time scale of the
process.

2. Accomplishments

Objective 1: Study head-on collision of viscous vortex rings

During the CTR Summer Program, a collaboration was undertaken between
the author, K. Shariff and F. Hussain to study the head-on collision of two
identical axisymmetric viscous vortex rings through direct simulations of the
incompressible Navier-Stokes equations. The result of this effort is described
in the proceedings for the 1988 Summer Program of the CTR (Stanaway et al.
1988).

Initial conditions of varying core shapes (thin rings, and Hill’s spherical vortex
rings) and Reynolds numbers (350 to 1000) were considered and the subsequent
annihilation process was studied through time history of circulation, vorticity
contours and local contributions to annihilation. The results provide a database
to model such a problem and also information about the level of detail required
to accurately model this phenomenon. A typical interaction proceeds as follows.
Two vortices of opposite sense and the same strength approach each other by self-
induction, the radii increase by mutual induction, and vorticity cancels through
viscous diffusion across the collision plane. Following contact, we observed (for
the cases considered here) that the vorticity distribution in the core forms a
head-tail structure, a behavior which has also been seen in inviscid calculations
(Shariff et al. 1988), 3D viscous calculations with periodic boundary conditions
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(Melander & Hussain 1988, MH), and experiments (Oshima 1978). In examining
the local contributions to the total vorticity annihilation in both the head and tail
regions, we conclude that the tail does contain a significant part of the vorticity
and should be included in an accurate model of the annihilation process.

The characteristic time of vorticity annihilation is compared with that of a 3D
collision experiment (Schatzle 1987) and 3D numerical simulations (MH). It is
found that the annihilation timescale for the axisymmetric collision is faster than
the viscous timescale, a2 /v, and slower than the timescale set by the circulation,
a2/(Tov) /2, where a, is the initial core radius, I, is the initial circulation,
and v is the viscosity. This indicates that the local effects are important in
enhancing annihilation, however, nonlocal effects such as vorticity realignment
are also important in 3D. One might expect that during the initial stages of
the collision, local effects are dominant, and as the circulation in the symmetry
plane weakens, the bridges strengthen and the out-of-plane strain becomes the
more important effect.

The flow is also computed to the large time Stokes flow limit where the circu-
lation decays as t~3/2 and the vorticity distribution agrees with the quadrupole
solution of the Stokes equations. In this limit, the self-annihilation is exactly
twice the mutual annihilation. For one of the cases computed, the far-field
quadrupole sound is compared with the experimental results of Kambe & Minota
(1983). The agreement is quite good even though the Reynolds numbers are very
different.

Objective 2: Extend axisymmetric spectral code to three dimensions

An operational axisymmetric code which solves the Navier-Stokes equations
in an unbounded domain is being modified to compute 3D flows. The method
(Stanaway, Cantwell & Spalart 1988) uses divergence free basis functions, hav-
ing the advantages of reducing the number of unknowns from four to two, and
eliminating the need to solve a Poisson equation for the pressure at each time
step. The solution is expanded in polar coordinates with the associated Leg-
endre functions in the polar direction and Jacobi polynomials matched to an
algebraic mapping of the radial coordinate. The third dimension, the azimuthal
direction, is expanded in Fourier series. The above functions are used in order
that the resulting matrix equations are numerically attractive; they are com-
pletely orthogonal in two directions and have a constant and relatively narrow
bandwidth in the third direction (bandwidth < 11). In addition, in the present
method the matrices are symmetric and positive definite.

The unknown coefficients in wave space, referred to as the + and — modes
(in keeping with the notation of similar approaches), each have an ordinary dif-
ferential equation describing their evolution. The axisymmetric basis functions
are a subset of the three dimensional functions, meaning that in extending the
axisymmetric code to 3D, much of the code remains intact. Specifically, the
evolution equation for the + modes is unchanged. In the 3D case, an additional
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evolution equation is required for the — modes. In the development of the ax-
isymmetric code, it was necessary to compute the matrix elements analytically
rather than numerically in order to minimize errors leading to ill conditioned
matrices. This process, which was rather involved due to the complex coordi-
nate system and mapping, was made possible with the aid of MACSYMA, an
algebraic manipulation program. It is worth noting that the effort required to
compute the elements of the matrices for the — modes was considerably less than
it was for the + modes. The major effort, therefore, in extending the code to
three dimensions has been in developing the transforms to and from wave space
for the 3D basis functions. This step is nearly finished and will be tested in a
straightforward manner by starting with an initial vorticity field, transforming
to wave space, and then back to real space.

So the problem of extending the code involves four phases:

(i) Deriving the basis functions and evolution equations.

(ii) Forming the matrices for the — mode evolution equation.

(ili) Developing and testing three dimensional transforms going to and from

wave space.

(iv) Running test cases.

Considerable progress has been made in extending the code to three dimen-
sions and it is expected that the 3D code will soon be operational.

3. Future Plans

This new method gives us the unique capability to study many important and
often controversial phenomena accurately, notably

o the Widnall instability of an almost axisymmetric ring, in particular, the mode
selection process;

e viscous connection and splitting;

e redistribution of vorticity by colliding or pairing vortex rings; and

e generation, intensification and annihilation of vorticity through vortex ring
interactions.
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The effects of particle loading on
turbulence structure and modelling

By K. D. SQUIRES AND J. K. EATON

1. Introduction

Conventional wisdom implies that the presence of particles provides an ad-
ditional dissipation or attenuation of turbulence. However, it is not clear how
this extra dissipation may be incorporated into turbulence models or how it de-
pends on the parameters of the problem including the particle time constant,
the mass loading, and the various dimensionless parameters describing the tur-
bulence. Simply focusing on the extra dissipation completely neglects the effect
of turbulence structure on the instantaneous particle concentration field and
the possibility of interactions between the particle cloud and instability mecha-
nisms generating turbulence. For example, particles selectively concentrated in
particular structures may cause rapid attenuation of that structure or trigger a
new instability mechanism. Therefore, it is important to determine the effect of
turbulence structure on the behavior of the particle cloud.

The objective of the present research was to extend the DNS approach to
particle-laden turbulent flows using a simple model of particle/flow interaction.
The program addressed the simplest type of flow, homogeneous, isotropic tur-
bulence, and examined interactions between the particles and gas phase tur-
bulence. The specific range of problems examined include those in which the
particle is much smaller than the smallest length scales of the turbulence yet
heavy enough to slip relative to the flow. The particle mass loading is large
enough to have a significant impact on the turbulence, while the volume load-
ing was small enough such that particle-particle interactions could be neglected.
Therefore, these simulations are relevant to practical problems involving small,
dense particles conveyed by turbulent gas flows at moderate loadings.

This report presents a sample of the results illustrating modifications of the
particle concentration field caused by the turbulence structure and also illus-
trating attenuation of turbulence by the particle cloud.

2. Overview of the simulations

The numerical method used in the present research is based on the pseudo-
spectral technique developed by Rogallo (1981) for solving the incompressible
Navier-Stokes equations. A modification of Rogallo’s code was used to simulta-
neously track a large number of particles using a vectorized, second-order inter-
polation scheme. This code is time advanced using second-order Runge-Kutta,
and at each substep the fluid velocity at the particle position was calculated
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using trilinear interpolation. Numerical experiments showed that more accurate
interpolation schemes do not significantly improve the results. The new position
was obtained by then integrating the particle equation of motion

dv; (t) _ Uug (XJ' (t), t) — v; (t)
dt Tp

(2.1)

dX;(t)
dt

where X;(t) and v;(t) are the position and velocity of the particle, 7, is the
particle time constant, and u;(X(t),t) is the velocity of the fluid. Stokes’law has
been used to calculate the drag on a particle, and it is, therefore, assumed that
the particle is much smaller than any lengthscale of the flow (the Kolmogorov
scale, n). It is also assumed that the particles are sufficiently dense such that
other forces in the full equation of motion, e.g. buoyancy and added mass, are
negligible compared to the Stokes drag. Finally, the particles are assumed to
occupy a negligible volume fraction, and particle-particle interactions are also
assumed negligible.

To calculate the effect of the particles on the turbulence, the momentum
equation of the fluid was modified by a source term on the right-hand side

= v (t) (2.2)

du; ou; 13P 0%u; c
FIR T - — (- v 3
ETERE R > 0z, + ”ax,-az,- Tpp (ui — ) (2.3)

where c(z;, t) is the particle mass per unit of volume, or particle density (repeated
indices imply summation).

The problem studied is homogeneous, isotropic turbulence in a box. “Natural”
isotropic turbulence decays, and the lack of stationarity complicates analysis of
the results. Therefore, the low wave number modes (large scales) are artificially
forced to maintain stationarity using the scheme developed by Hunt, et al (1987).
Results were obtained using 373000 particles for simulations using 32° points and
1.x10° particles for simulations using 64° points. The relatively coarse grid 32°
calculations permitted a parameter study in particle time constant and mass
loading ratio. For the 32° simulations the values of the particle time constant
divided by the eddy turnover time used were 0.14, 0.75, and 1.50. The mass-
loadings used in the 32° simulations were 0.1, 0.5, and 1.0. All three values of
the mass loading were used for each of the time constants for these simulations.
For the 64° simulations the values of the dimensionless time constant were 0.075,
0.15, and 0.52 and the mass loadings were 0.1, 0.5, and 1.0.

For each simulation the two phases were uncoupled and time-advanced to reach
a statistically stationary state and eliminate initial transients of the forcing. At
this point in time, the momentum equation of the fluid was coupled to the
particle momentum equation with a specified mass loading. Once the phases
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were coupled, the simulations were time advanced just over 12 eddy turnover
times for the 32° simulations and slightly over 6 eddy turnover times for the 64°
simulations.

Results from the simulations of no coupling (¢ = 0 where ¢ is the mass loading)
between the phases provide a baseline case to compare the effect of increased
mass loading on the turbulence statistics. These simulations are also useful
for examining the effect of turbulence “structure” on the particle concentration
field. For these baseline simulations the Reynolds number based on the Taylor
microscale was approximately 37. This relatively low value for the Reynolds
number assured good resolution of the velocity field.

3. Results and discussion

Maxey (1987) has shown that particles will tend to accumulate in regions of
high strain rate or low vorticity. This effect can be measured by using the second
invariant of the deformation tensor, du;/dz;. The second invariant of du,/8z;
is given by

= -1 - 1o (3.1)
d= 2 it .
where s? is the magnitude of the strain rate, s;;s;;, w; is the jth component of
the vorticity vector and w;w; is by definition the enstrophy.

Thus, from equation (3.1) highly vortical regions correspond to 11, being large
and positive (where the number density is small), while regions of high strain
correspond to 114 being large and negative (where the number density is large).

Contours of number density for each of the particles used in the simulations
showed distinct regions where particles had collected. It was found that the
peak number density is as much as 40-50 times the mean value for the lightest
particles used in the simulations. By comparing these contours with the contours
of the second invariant of du;/dz;, it was found that the particles showed a
tendency to accumulate in regions of low vorticity or high strain rate. As the
particles were made more sluggish (i.e., larger 7,), there is less of a tendency
for them to accumulate in these regions. For the heaviest particle used in the
32° simulations (7,/T, = 1.50), the particle concentration field was found to be
essentially random.

The preceding results were quantified by examining the conditional expecta-
tion of the number density given the value of the enstrophy. The conditional
expectation showed that the effect of increasing particle inertia reduced the like-
lihood of finding the particles in regions of low vorticity (figure 1). For the
64° simulations, the lightest particles (7,/T, = 0.075) actually showed less of
a tendency to accumulate in regions of low vorticity than did particles which
were twice as heavy (7,/T. = 0.150). This can be explained by the fact that
very light particles can follow nearly all of the turbulent motions and would,
therefore, show no preference to be in regions of low vorticity.
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FIGURE 1. Conditional expectation of number density given enstrophy for

the 64° simulations, ¢ = 0.

For increasing values of the mass loading, the conditional expectation of num-
ber density given the enstrophy for the light particles showed that they had less
of a tendency to be in regions of low vorticity. However, this was not the case
for the heavier particles.

Correlations between the number density and enstrophy showed that as the
loading was increased the lightest particles became less correlated with enstro-
phy. For the larger time constants, however, the number density and enstrophy
become more correlated for increasing values of the time constant and increased
loading. Correlations between number density and I1I; showed that as the mass
loading was increased the correlation between number density and 714 increased.
This increase in the correlation was more significant for larger values of the time
constant.

Once the two phases were coupled, the turbulence evolved to a new stationary
state within about two eddy turnover times. For all the time constants used in
the simulation, it was found that the time required to come to a new equilibrium
was longer for increasing loadings, and the maximum development time for any
case was just over two eddy turnover times. Time averaged statistics such as
turbulence energy showed that increased mass loading decreased the turbulence
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energy (figure 2). These results are consistent with the fact that the drag of the
particles on the turbulence acts as an additional source of dissipation. This can
be shown be deriving the transport equations for u;u; (beginning with equation

(2.3)).

Frequency spectra measured along the particle path were nearly identical for
all simulations. The differences in the turbulence spectrum for the three cases
can be attributed to the fact that the lighter particles are found more often in
regions of low vorticity and high strain rate than are the heavier particles. This
causes a sampling bias resulting in the differences between the spectra along the
particle path. Measured values of the particle velocity spectra were found to be
in excellent agreement with a theoretical prediction of Csanady (1963). It was
somewhat surprising to find such close agreement with Csanady’s theory in view
of the fact that the particles are concentrated within particular regions of the
turbulence. Examination of the power spectra of the turbulence for increasing
values of the mass loading showed that energy was removed nearly equally from
all frequencies. This may be due in part to the low Reynolds number of the
simulations. Selective energy loss within certain frequency bands may occur at
higher Reynolds numbers.
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Correlations between enstrophy and pressure were decreased more by the light
particles than by the heavy particles for increasing values of the mass loading.
Since regions of low pressure are associated with regions of high vorticity, these
results indicate that the lighter particles cause more distortion of these eddies
than do the heavier particles. The fact that the lighter particles show a more
pronounced tendency to accumulate in regions of lower vorticity (for ¢ = 0) than
do the heavier particles may provide some explanation for this.

Correlations between II; and pressure showed that for the time constants and
mass loadings used in the simulations the correlation between these two quanti-
ties remained reasonably constant, decreasing slightly for the lightest particles.
Correlating I1; with pressure correlates regions of low pressure with vortices
(large positive 11;) and regions of high pressure with straining regions (large
negative I1;). Therefore, these results indicate that the correlation between the
straining regions with regions of high pressure must be increasing to compen-
sate for the loss of correlation between the vortical regions and regions of low
pressure for the lighter particles.

In summary, it was found that for the case of zero loading there are significant
effects of the turbulence “structure” on the resulting concentration field. These
results were quantified by measuring conditional expectations and correlations.
It is shown that the lighter particles show a strong tendency to be in regions of
low vorticity and high strain rate.

For increasing values of the mass loading the power spectra of the turbulent
fluctuations do not show any frequencies to be preferentially modified by the
particles. This may be partially due to the fact that there is not a large range
of scales in the simulations.

The lightest particles used in these simulations were found to modify the
turbulence field differently than did the heavier particles. Since the light particles
show a more pronounced tendency to accumulate in regions of low vorticity for
¢ = 0, these regions are modified more by the light particles as the loading is
increased than the heavy particles. Evidently, this selective modification by the
light particles causes more of a distortion of the turbulent eddies than the more
uniform modification by the heavier particles.
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Analyses of turbulence structures in shear flows
By M. J. LEE

Outline of the research program and a recent progress in the studies of sheared
turbulence are described. The research program reported here is directed at
two goals: (i) understanding of fundamental physics of organized structures
in turbulent shear flows; and (ii) development of phenomenological models of
turbulence based on physical arguments. Three projects that have been carried
out are:

A. structure of sheared turbulence near a plane boundary;
B. distortion of turbulence by axisymmetric strain and dilatation;
C. study of energy transfer in turbulent shear flow.

1. Motivation and Objectives

Project A was motivated by the demonstration of remarkable similarity be-
tween homogeneous turbulent shear flow and turbulent channel flow in instan-
taneous velocity (and vorticity) fields and statistical correlations at the same
dimensionless shear rate S* = S¢?/¢ (Lee, Kim & Moin 1987). Here, S = dU/dy
is the mean ‘shear rate,’ ¢? = %;%; is twice the turbulent kinetic energy and ¢ is
the dissipation rate of the kinetic energy. The similarity in instantaneous vector
flow topology as well as in statistical measures bears a profound implication
towards a possibility of developing a ‘universal’ turbulence model. In particu-
lar, this study showed that shear rate alone (without a wall) can produce the
streaky structures, providing a strong support for the importance of shear rate
in determining turbulence structures.

The presence of a solid boundary affects turbulence in two fundamental ways:

(i) generation of mean velocity gradient (via the no-slip condition) which, upon

interaction with turbulence, supplies energy to it; and

(ii) suppression of velocity fluctuations in its vicinity.
It is hypothesized that these two effects are distinct in affecting turbulence struc-
ture so that they can be accounted for separately. Project A centers on the anal-
ysis of these two functions of a solid boundary and consists of three subprojects:
uniform-shear boundary layer (USBL), plane Couette flow (PCF) and shear-free
channel flow (SFCF). See figure 1 for schematic of the flows.

The uniform-shear boundary layer (USBL) project aims at a theoretical ex-
planation of the generation mechanism of the streaks in turbulent shear flows
(Lee & Hunt 1988). In USBL, the mean flow has a velocity profile U = Sy + U
with the shear rate S uniform and constant, and the flow field is assumed to be
inviscid with a slip velocity condition at the surface y = 0. The analysis was
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FIGURE 1. Schematic diagram of turbulent shear flows: (a) a uniform-shear
boundary layer (USBL); (b) plane Couette flow (PCF); (c) shear-free channel
flow (SFCF).
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carried out for the evolution and distribution of turbulence by using rapid dis-
tortion theory (RDT). Particular emphasis is placed on the differences between
the shear-free boundary layer (see Uzkan & Reynolds 1967; Hunt & Graham
1978; Hunt 1984) in redistributing turbulence near the surface by the blocking
effect.

The plane Couette flow (PCF) and shear-free channel flow (SFCF) projects
were motivated by a need to generate numerical databases of turbulent wall-
bounded flows with a constant total shear stress 7(y) = pdU/dy — puv = 7y,
across the boundary layer (PCF) and zero mean velocity gradient near a wall
(SFCF), respectively. These two cases are considered as building-block flows
since most turbulence models are based on the wall-layer similarity with a con-
stant shear stress 7 (Townsend 1976, §85.4, 5.7-5.9). It is of our interest to
characterize organized turbulence structures in the near-wall regions at different
mean shear rates and to examine the capability of the current scaling laws (or
turbulence models) in describing turbulence characteristics of such flows (cf. El
Telbany & Reynolds 1980, 1981).

The purpose of Project B is to investigate the behavior of homogeneous tur-
bulence subjected to axisymmetric distortion (contraction and expansion) and
dilatation (Lee 1988). Closed-form solutions obtained by using RDT are com-
pared with the numerical simulations (Lee & Reynolds 1985). The theoreti-
cal results are then used to develop a model for the pressure-strain-rate term
T:; = (2/p) Psi;- A ‘simple’ model for the pressure-strain-rate term shows that
the ‘history effect’ (total strain) is important.

Project C is to explore detailed processes of the pressure-strain energy transfer
in a turbulent shear flow (Brasseur & Lee 1987, 1988). Relationships between
a local energy transfer event and the nearby vortical structures are studied by
looking into instantaneous flow fields from numerical simulations of homogeneous
shear flow (Rogers et al. 1986). For a kinematical description of the process,
the energy transfer is classified into six classes according to the instantaneous
directionality of the energy transfer between components. This concept of the
energy transfer class can be applied to the statistical quantities such as the
average value and probability density function (pdf). In this project, we are
also interested in exploring the energy transfer across the different scales (e.g.
spectral energy transfer) and its relationship with the intercomponent energy
transfer.

2. Accomplishments
2.1. Project A: Wall Turbulence

2.1.1. USBL Project

The USBL project (Lee & Hunt 1988) convincingly demonstrates that the
streak generation is entirely due the high shear rate, and that the surface block-
. ing, in fact, prohibits formation of the streaks. As shown by Lee, Colonius &
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irrotational velocity u® above y = 0; and (b) uniform-shear boundary layer,
where reduced vortex bending near the surface reduces u? while splat effect
increases u?.

Moin (1988), the streaks consist of eddies of large streamwise velocity fluctu-
ations and turbulent shear stress —uv, and hence they are energy-producing
eddies. The vorticity field associated with the streaks is found to be corrugated
sheet vortex which has large spanwise and normal vorticity fluctuations, w, and
wy, but relatively weak streamwise vorticity, w,. Near a solid surface, the cor-
rugated vortex sheet becomes flat (less corrugated) due to the blocking effect
of the surface, thus reducing the dominance of the streamwise fluctuations (see
figure 2).

Figure 3 shows the energy spectra of the streamwise velocity E;;(ks;y) as a
function of the spanwise wavenumber k3 and total shear 8 = St at y/L = 0
and 1 (L is the energy integral scale at # = 0). While there is no evident sign
of the streaks at the surface y = 0 (fig. 3a), the spectra away from the surface
(vy/L = 1) show peaks that develop significantly with shear (fig. 3b). The
fact that the streaks exist in sheared turbulence, independent of the presence
of a solid boundary, but not in a shear-free boundary layer (Uzkan & Reynolds
1967), strongly supports the assertion that the main mechanism of generating
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the streaks is the mean shear but not the wall blocking (Lee et al. 1987).
Notice that the peaks within a narrow band of k3 are indicative of the existence

of the streaks in the flow. The mean spanwise spacing A, of the streaks can be

estimated from the wavenumber at which the spectrum peaks: A, = 1/«3. In
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figure 4, the variation of the mean streak spacing shows an increase with y. This
study reinforces our earlier work (Lee, Kim & Moin 1987), namely, that the
generation mechanism of the streaks is essentially tnviscid and linear.

2.1.2. PCF Project

The PCF and SFCF projects make use of numerical databases from direct
simulations. We have completed numerical simulation of plane Couette flow
(PCF) with a wall moving at a speed U, parallel to the stationary wall. The
computation was performed on a 128 x 129 x 128 grid and a passive scalar field
(Pr = 0.71) with constant boundary conditions was included in the computation.
The flow Reynolds number Re based on the wall velocity Uy, and half the channel
width h is 6,000, and that based on the shear velocity U, = (vdU/dy|w)'/? is
about 200. Other major aspects of the computation are similar to those in the
Poiseuille flow of Kim et al. (1987). The computation has been conducted for
a period of about 100 h/U,, that corresponds to about ten (10) computational
box lengths.

In figure 5(a), the computed mean velocity profile across the channel is com-
pared with the experimental results conducted at different flow Reynolds num-
bers (Re = 2,900, Reichardt 1959; Re ~ 2x 10* ~ 4 x 104, El Telbany & Reynolds
1980). It should be noticed that at high Reynolds numbers the velocity profile
changes rapidly within a narrow region near the walls (Jy| > 0.8), and that there
exists a constant slope over half the channel width around the center (|y| < 0.5).
The mean velocity gradient at the boundary dU/dy|,, grows significantly with
the Reynolds number. The near-wall profile made dimensionless by the viscous
units (U, and £, = v/U,) is in good agreement with the classical law of the wall
(fig. 5b).

The turbulence intensities (u't,v'*,w't) scaled by the shear velocity U,

in figure 6 also show good agreement with the experimental results at higher
Reynolds numbers (E! Telbany & Reynolds 1981). Compared with those in a
plane Poiseuille flow at comparable Reynolds numbers (Kim et al. 1987; Kreplin
& Eckelmann 1979), the intensities in PCF are significantly higher over most of
the channel, except in the vicinity of the wall (y < 30) where the PCF values are
only slightly higher. This marked contrast is a direct consequence of the con-
stancy of total shear stress 7/p = vdU/dy — uv across the channel in PCF. (In
a plane Poiseuille flow, the total shear stress has a linear profile 7/|ry| = —y/h,
and dU/dy = 0 and uv = 0 at the channel center, y = 0, by symmetry.)
__The turbulence structure exhibits strong anisotropy; even in the core region,
u2 1 v2 : w2 o~ 6 :1: 2. The linear mean velocity profile (i.e. constant mean shear
rate) in the core region is indicative of the existence of homogeneous turbulence,
where the turbulence statistics are approximately constant (see figure 6).

2.1.3. SFCF Project

In order to achieve zero mean shear rate in the wall region of shear-free channel
flow (SFCF), one needs to determine the speed of the moving wall U, and the
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constant pressure gradient dP/dz (see figure 1), which can be obtained only by
solving the equations. Preliminary calculation on a 64 x 129 x 64 grid has been
carried with a developed plane Couette flow field as its initial condition; the
value of the pressure gradient was varied at each timestep to obtain zero mean
shear on the moving wall, and the response of the flow to the varying pressure
gradient was found to be slow. Full-scale computation on a 128 x 129 x 128 grid
is planned.

2.2. Project B: Azisymmetric-strain/Dilatation RDT

Exact expressions for turbulence structural quantities, such as the Reynolds
stresses and vorticity correlations, were obtained in closed form by using rapid
distortion theory (Lee 1988). Comparison with the numerical simulations (Lee
& Reynolds 1985) at a high strain rate shows remarkable agreement for all the
quantities considered. Differences in effects of the two opposite, axisymmetric
strain modes (contraction and expansion) on turbulence structure were investi-
gated in detail. For example, axisymmetric contraction produces much higher
fluctuation in velocity and vorticity (R;; = W and V;; = w;w;, respectively)
as well as their anisotropy (bi; = Ri;/Rxx — 6;/3 and v;j = Vi /Vix — 653, re-
spectively) than does a.xlsymmetnc expansion. Figures 7(a, b) show comparison
of anisotropy development during axisymmetric distortion.



Analyses of turbulence structures in shear flows 71
¥ 1 1 T T
06  (a)
)..
04
o 02 -
O
0.0
-02
-04
C
..;__._ ]
B e .
__.04 A | 1 1 ! d
1 2 3 4 5 678
C
FIGURE 7. Evolution of anisotropy in axisymmetric strain flows (AC,

axisymmetric contraction; AE, axisymmetric expansion): (a) Reynolds-stress

anisotropy b;;; (b) vorticity anisotropy, v;;. Lines are RDT results: AC,

b

1i=1,j=1;——,1=2,5 =2; AE,-——-,1 = 1,5 = 1; - yt=2,7 = 2. Sym-
bols are from numerical simulations (Lee & Reynolds 1985): AC, @, =1, =1;

O0,1=2,7=2;AE,l,:=1,7=1,0,t=2,7=2.
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FIGURE 8. Test of the present model against different strain-rate cases,

T11/(Sq2): (a) axisymmetric contraction (S11 > 0); (b) axisymmetric expansion
(S11 < 0). Lines are prediction of the present model and symbols are from
numerical simulations (Lee & Reynolds 1985): and @, S* ~ 100; ——
and A, S* =~ 10; - and O, S* ~ 1.
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The effect of mean-field dilatation on turbulence is also of interest. It is shown
that, for flows of uniform, time-dependent density p(t) at low turbulence Mach
number, the statistical correlations, such as the ‘Reynolds stress’ R;; = Uiy, are
related to those in the equivalent incompressible flow by a decomposition of mean
strain-rate tensor, e.g. Ri;(e) = (p/po)?/*R};(e*) where €;; = Js Ui i(t) dt’ is
the total-distortion tensor and €j; is the corresponding incompressible distortion
(po is the initial density). Similarly, the vorticity correlation V;; = w;wy is given
by Vij(e) = (p/po)*/ 3V;x(e*). It was also found that the rate of dilatation does
not contribute to pressure fluctuation.

Terms in the transport equation for R;; were evaluated for axisymmetric strain
flow, and existing models for the pressure—strain-rate term were examined. It
was shown that improvements can be made for the model by incorporating struc-
tural parameters based on the linear analysis (RDT) of axisymmetric strain
flows. Prediction of the improved model agrees quite well with the numerical
simulations, even in cases at lower strain rates (figure 8). This study indicates
that a turbulence model should reflect ‘history effect,’ since a state in nonsta-
tionary turbulence depends not only on the instantaneous quantities (e.g. the
Reynolds stresses) but also on the memory effect (e.g. total strain) accumulated
during a distortion.

2.3. Project C: Energy Transfer Process

A detailed study of the intercomponent energy transfer processes by the
pressure-strain-rate in homogeneous shear flow has been carried out by using a
numerical database by Rogers et al. (1986). In the previous study (Brasseur
& Lee 1987), it was found that the rapid and slow parts of fluctuating pres-
sure are uncorrelated, i.e. P;p./ (;?;)?)1/2 < 1, and their scales are widely
separated, providing a strong justification for current modeling procedure in
which the pressure—strain-rate term is split into the corresponding parts. It was
shown that local intercomponent energy transfer processes are associated with
high vorticity regions. We limit our discussion to the ‘slow’ pressure-strain-rate
$i; = (2/p) Pesi.

Our recent study (Brasseur & Lee 1988) of probability density functions
(pdf’s) and contour plots of the pressure-strain-rate shows that the energy
transfer processes are extremely peaky (figure 9), with high-magnitude events
dominating low-magnitude fluctuations, as reflected by very high flatness factors
(30-40). The concept of the energy transfer class is defined as

CEEE = {¢::(x,t) | $11 2 0,22 2 0, b33 2 0}.

For example, C~** denotes the class of ¢;; in which energy leaves u (¢, < 0)
and enters v and w (¢22 > 0, g3z > 0). Note that this classification of the
energy transfer is unique and there are six possible classes which are disjoint (or
mutually exclusive). The classification has been applied to investigate details of
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FIGURE 9. Pdf’s of the diagonal elements of the slow pressure-strain-rate
$i; = psij: (@) P(11); (b) P(d22); (c) P(dss). ----, Gaussian distribution.
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FIGURE 10. Schematic of the intercomponent energy transfer processes,

representing contributions from all magnitudes of ¢;; events. The schematic
shows that the four classes Ct*+—, C~t+, C~t~ and C~~1 are dominant.

the direction as well as magnitude of the energy transfer processes. Examination
of contours in an instantaneous field, pdf’s and weighted pdf’s of the pressure-
strain-rate indicates that in the low-magnitude regions (defined as where |¢aa| <
1.5 r.m.s. @uq) all six classes are important, but in the high-magnitude regions
four classes Ct*+—, C~t+, C~t~ and C~~% dominate. The contribution to
the average slow pressure-strain-rate from the high-magnitude fluctuations is
only 50% or less, indicating complexity of the problem. However, when summed
over all magnitudes, the same four classes of energy transfer dominate as shown
by the schematic in figure 10.

3. Future Plan
3.1. Project A: Wall Turbulence

3.1.1. USBL Project

We plan to look into other aspects of the blocking effect of the boundary by
examining the two-point correlations between the vertical velocity component
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and the streamwise and vertical components. Here, we are interested in assessing
the degree of self-similarity of these correlations and seeking possible scaling laws
that can be used to develop near-wall turbulence models.

3.1.2. PCF Project

It is anticipated to learn a great deal about how the turbulence structure
changes across the interface between the homogeneous core region and inhomo-
geneous wall region. We are especially interested in examining the structure of
stationary, homogeneous, sheared turbulence in the core region. The stationar-
tty and homogeneity in this flow are generated in a natural way, unlike in flows
where artificial forcing techniques are used.

3.1.3. SFCF Project

The SFCF project complements the USBL and PCF studies in many respects.
While the USBL and PCF projects focus on the role of the mean shear rate in
affecting structure of turbulence in wall layer, the SFCF study is designed to
study the kinematical nature of the presence of a boundary, i.e. the inquiry
into how turbulence is suppressed by the boundary. We expect to learn details
of physical mechanisms involving energy redistribution near the boundary, and
comparison will be made between the RDT study of shear-free boundary layer,
a special case of USBL at 8 = 0 (Lee & Hunt 1988). Another impetus to carry
out the SFCF project is that this flow allows a unique opportunity to develop
a turbulence model for the transport terms, since, in the shear-free wall layer,
the transport terms balance the dissipation term in the equation for turbulent
kinetic energy.

3.2. Project C: Energy Transfer Process

Inspection of the energy transfer processes depicted in figure 10 poses an inter-
esting question about the kinematic structure of the energy transfer. It appears
that the dominant energy transfer to or from one component is provided by the
other two components. If the off-diagonal components in ¢;; are negligible, then
most of the energy transfer takes place within axisymmetric flow regimes. The
answer awaits invariant analysis of the tensorial structure of the pressure-strain-
rate (and strain rate).

In parallel with the intercomponent energy transfer, energy transfer between
scales in a flow with coherent vortical structures is also important. In an at-
tempt to generate coherent structures in grid turbulence, Michard et al. (1987)
used a grid with propellers which give rise to spectral disturbances. Their study
showed that the initially strong anisotropy near the grid due to spectral distur-
bances relaxes to an axisymmetric state. Numerical simulation is planned to
investigate such a flow. We are interested in looking into how the disturbances
are transferred between components as well as between scales.
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